Printed Pages: 4

ECS505

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 113606

Roll No.

B. Tech.

(SEM. VI) THEORY EXAMINATION, 2014-15 GRAPH THEORY

Time: 2 Hours]

[Total Marks: 50

Note: Attempt all questions.

1 Attempt any four parts:

 $4 \times 3 = 12$

- (a) State a necessary and sufficient condition when a graph G is disconnected. Illustrate with an example.
- (b) State and verify:
 - (i) Which complete bipartite graphs are Hamiltonian?
 - (ii) Which complete graphs are Eulerian?
 - (iii) Is Peterson graph Hamiltonian?
- (c) Let T be a tree with 50 edges. The removal of certain edge from T yields two disjoint trees T₁ and T₂. Given that the number of vertices in T₁ equals the number of edges in T₂. Determine the number of vertices and number of edges in T₁ and T₂.

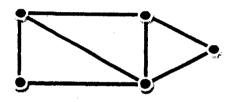
113606]

- (d) State and prove Handshaking Lemma.
- (e) State properties of cut-sets and discuss their applications.
- (f) Define the vector space associated with a graph.

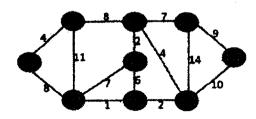
2 Attempt any two parts:

 $2 \times 6 = 12$

(a) For the given graph find out the vectors in the circuit subspace and cut-set subspace. Also find out the basis for each subspace.



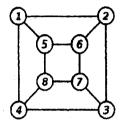
- (b) State and prove Euler's formula for planar graphs. Also show that in a simple connected planar graph with 6 vertices and 12 edges each of the regions is bounded by 3 edges.
- (c) Write the steps of Dijakstra's algorithm and use it to find the shortest path in the following graph from vertices 0 to 4.

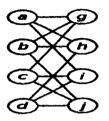


3 Attempt any two parts.:

2×6=12

- (a) Define incidence matrix of a graph with an example. Also prove that the rank of an incidence matrix of a graph with n vertices is n-1.
- (b) Define isomorphic graphs. Show that the following graphs are isomorphic.





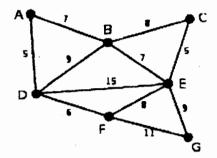
- (c) Let T be a graph with n vertices. Then prove that the following statements are equivalent:
 - (i) T is a tree
 - (ii) T contains no cycles and has n-1 edges
 - (iii) T is connected has n-1 edges
 - (iv) T is connected and each edge is a bridge
 - (v) Any two vertices of T are connected by exactly one path
 - (vi) T contains no cycles, but the addition of any new edge creates exactly one cycle.

4 Attempt any four parts:

4×3.5=14

(a) What do you mean by Geometrical dual of a graph? Prove that the complete graph with 4 vertices is self dual.

- (b) State and prove four color conjecture.
- (c) Using Kruskai's algorithm to find the minimal spanning tree of the following graph.



- (d) What are Kuratowski's Two Graphs? Prove that these graphs are non-planar.
- (e) Find:
 - (i) The chromatic polynomial of $K_{2,m}$.
 - (ii) Three graphs with chromatic polynomial

$$\lambda^5 - 4\lambda^4 + 6\lambda^3 - 4\lambda^2 + \lambda$$

(f) Prove that a binary tree with n vertices has n-1 edges.